Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Free Radic Biol Med ; 220: 262-270, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729451

RESUMEN

Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.


Asunto(s)
Envejecimiento , Polimorfismo de Nucleótido Simple , Sirtuinas , Humanos , Sirtuinas/genética , Sirtuinas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Rigidez Vascular/genética , Grosor Intima-Media Carotídeo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo , Predisposición Genética a la Enfermedad , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología
2.
medRxiv ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693625

RESUMEN

Purpose: In genome-wide association studies (GWAS), X chromosome (ChrX) variants are often not investigated. Sex-specific effects and ChrX-specific quality control (QC) are needed to examine these effects. Previous analyses identified 52 autosomal variants associated with age-related macular degeneration (AMD) via the International AMD Genomics Consortium (IAMDGC), but did not analyze ChrX. Therefore, our goal was to investigate ChrX variants for association with AMD. Methods: We genotyped 29,629 non-Hispanic White (NHW) individuals (M/F:10,404/18,865; AMD12,087/14723) via a custom chip and imputed after ChrX-specific QC (XWAS 3.0) using the Michigan Imputation Server. Imputation generated 1,221,623 variants on ChrX. Age, informative PCs, and subphenotyeps were covariates for logistic association analyses with Fishers correction. Gene/pathway analyses were performed with VEGAS, GSEASNP, ICSNPathway, DAVID, and mirPath. Results: Logistic association on NHW individuals with sex correction, identified variants in/near the genes SLITRK4, ARHGAP6, FGF13 and DMD associated with AMD (P<1x10 -6 ,Fishers combined-corrected). Via association testing of subphenotypes of choroidal neovascularization and geographic atrophy (GA), variants in DMD associated with GA (P<1x10 -6 , Fishers combined-corrected). Via gene-based analysis with VEGAS, several genes were associated with AMD (P<0.05, both truncated tail strength/truncated product P) including SLITRK4 and BHLHB9 . Pathway analysis using GSEASNP and DAVID showed genes associated with nervous system development (FDR: P:0.02), and blood coagulation (FDR: P:0.03). Variants in the region of a microRNA (miR) were associated with AMD (P<0.05, truncated tail strength/truncated product P). Via DIANA mirPath analysis, downstream targets of miRs show association with brain disorders and fatty acid elongation (P<0.05). A long-non coding RNA on ChrX near the DMD locus was also associated with AMD (P=4x10 -7 ). Epistatic analysis (t-statistic) for a quantitative trait of AMD vs control including covariates found a suggestive association in the XG gene (P=2x10^-5). Conclusions: Analysis of ChrX variants demonstrates association with AMD and these variants may be linked to novel pathways. Further analysis is needed to confirm results and to understand their biological significance and relationship with AMD development in worldwide populations.

3.
Neurobiol Aging ; 123: 216-221, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658081

RESUMEN

Executive function is a cognitive domain with sizable heritability representing higher-order cognitive abilities. Genome-wide association studies (GWAS) of executive function are sparse, particularly in populations underrepresented in medical research. We performed a GWAS on a composite measure of executive function that included measures of mental flexibility and reasoning using data from the Northern Manhattan Study, a racially and ethnically diverse cohort (N = 1077, 69% Hispanic, 17% non-Hispanic Black and 14% non-Hispanic White). Four SNPs located in the long intergenic non-protein coding RNA 1362 gene, LINC01362, on chromosome 1p31.1, were significantly associated with the composite measure of executive function in this cohort (top SNP rs2788328, ß = 0.22, p = 3.1 × 10-10). The associated SNPs have been shown to influence expression of the tubulin tyrosine ligase like 7 gene, TTLL7 and the protein kinase CAMP-activated catalytic subunit beta gene, PRKACB, in several regions of the brain involved in executive function. Together, these findings present new insight into the genetic underpinnings of executive function in an understudied population.


Asunto(s)
Función Ejecutiva , Estudio de Asociación del Genoma Completo , Humanos , Encéfalo , Cognición/fisiología , Hispánicos o Latinos , Polimorfismo de Nucleótido Simple/genética , Negro o Afroamericano
4.
PLoS One ; 17(1): e0250799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35020748

RESUMEN

Carotid plaque is a subclinical measure of atherosclerosis. We have previously shown measures of carotid plaque to be heritable in a sample of 100 Dominican families and found evidence for linkage and association of common variants (CVs) on 7q36, 11p15, 14q32 and 15q23 with plaque presence. Our current study aimed to refine these regions further and identify rare variants (RVs) influencing plaque presence. Therefore, we performed targeted sequencing of the one LOD unit down region on 7q36, 11p15, 14q32 and 15q23 in 12 Dominican families with evidence for linkage to plaque presence. Gene-based RV analyses were performed using the Sequence Association Test for familial data (F-SKAT) under two filtering algorithms; 1. all exonic RVs and 2. non-synonymous RVs. Replication analyses were performed using a sample of 22 Dominican families and 556 unrelated Dominicans with Exome Array data. To identify additional non-synonymous RVs influencing plaque, we looked for co-segregation of RVs with plaque in each of the sequenced families. Our most strongly associated gene with evidence for replication was AMPD3 which showed suggestive association with plaque presence in the sequenced families (exonic RV p = 0.003, nonsynonymous RV p = 0.005) and replication families (exonic RV p = 0.04, nonsynonymous RV p = 0.02). Examination of the sequenced family pedigrees revealed two missense variants on chromosome 11 which co-segregated with plaque presence in one of our families; rs61751342 (located in DENND2B), and rs61760882 (located in RNF141). The rs61751342 missense variant is an eQTL for SCUBE2 in the atrial appendage. Notably, SCUBE2 encodes a protein which interacts with vascular endothelial growth factor (VEGF) receptor 2 to regulate VEGF-induced angiogenesis, thus providing biologic plausibility for this gene in atherosclerosis. In conclusion, using targeted sequencing of previously-identified linkage regions, we have identified suggestive evidence for the role of RVs in carotid plaque pathogenesis.


Asunto(s)
Ligamiento Genético , Placa Aterosclerótica/genética , AMP Desaminasa/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Proteínas de Unión al Calcio/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 7/genética , Proteínas de Unión al ADN/genética , República Dominicana , Genotipo , Humanos , Persona de Mediana Edad , Linaje , Placa Aterosclerótica/patología , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
5.
Ear Hear ; 43(1): 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34039936

RESUMEN

Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.


Asunto(s)
Síndromes de Usher , Estudios de Asociación Genética , Humanos , Mutación , Fenotipo , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
6.
J Otol ; 16(4): 258-265, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34548873

RESUMEN

Given the interdependence of multiple factors in age-related vestibular loss (e.g., balance, vision, cognition), it is important to examine the individual contributions of these factors with ARVL. While the relationship between the vestibular and visual systems has been well studied (Bronstein et al., 2015), little is known about the association of the peripheral vestibular system with neurodegenerative disorders (Cronin et al., 2017). Further, emerging research developments implicate the vestibular system as an opportunity for examining brain function beyond balance, and into other areas, such as cognition and psychological functioning. Additionally, the bidirectional impact of psychological functioning is understudied in ARVL. Recognition of ARVL as part of a multifaceted aging process will help guide the development of integrated interventions for patients who remain at risk for decline. In this review, we will discuss a wide variety of characteristics of the peripheral vestibular system and ARVL, how it relates to neurodegenerative diseases, and correlations between ARVL and balance, vision, cognitive, and psychological dysfunction. We also discuss clinical implications as well as future directions for research, with an emphasis on improving care for patients with ARVL.

7.
Am J Med Genet A ; 185(10): 3012-3018, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34152076

RESUMEN

Identifying hereditary syndromes among patients with renal cell carcinoma (RCC) is essential for surveillance of affected individuals and their at-risk family members and for treatment optimization. We conducted a chart review to determine the percentage of patients with RCC who were seen at the University of Miami Health System (UHealth), and met the American College of Medical Genetics (ACMG) and the National Society of Genetic Counselors (NSGC) genetic referral criteria at the University of Miami. Subsequently, we determined the percentage of those who went on to receive genetic evaluation. Patients selected by International Classification of Diseases (ICD) 9/10 codes corresponding to kidney cancer who were at least 18 years of age at the time of diagnosis were included in the study. We included a total of 1443 patients in the final analysis, and after exclusion of charts with incorrect ICD codes, insufficient clinical data, unknown pathology, and patients who were not seen. We used chi-square analysis, ANOVA, and t-test. Of 1443 charts reviewed, 65.7% were male and 34.3% were female. 47.7% self-identified as White, 39.2% as Hispanic, 9.1% as Black, and 4.0% as "other." The mean age of RCC diagnosis was 60.0 ± 12.4 years old. In total, 47.0% of patients met ACMG/NSGC referral criteria for genetic evaluation. Of those, only 4.2% had documented genetic assessment. This study showed a low adherence to ACMG/NSGC genetic referral guidelines at our institution and a need for increasing patients' and practitioners' awareness about the significance of genetic assessment for RCC patients and their family members.


Asunto(s)
Carcinoma de Células Renales/diagnóstico , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Anciano , Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Femenino , Guías como Asunto , Humanos , Masculino , Persona de Mediana Edad , Sociedades Médicas , Estados Unidos/epidemiología
8.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050020

RESUMEN

Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.


Asunto(s)
Codón sin Sentido , Conexinas/metabolismo , Genes Dominantes , Pérdida Auditiva Central/genética , Proteínas de la Membrana/genética , Animales , Implantación Coclear , Femenino , Pérdida Auditiva Central/metabolismo , Pérdida Auditiva Central/fisiopatología , Pérdida Auditiva Central/cirugía , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Percepción del Habla
9.
Front Cell Dev Biol ; 9: 656865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055787

RESUMEN

Non-syndromic cleft lip with or without cleft palate (NSCLP) is the most common craniofacial birth defect. The etiology of NSCLP is complex with multiple genes and environmental factors playing causal roles. Although studies have identified numerous genetic markers associated with NSCLP, the role of epigenetic variation remains relatively unexplored. Because of their identical DNA sequences, monozygotic (MZ) twins discordant for NSCLP are an ideal model for examining the potential contribution of DNA methylation to non-syndromic orofacial clefting. In this study, we compared the patterns of whole genome DNA methylation in six MZ twin pairs discordant for NSCLP. Differentially methylated positions (DMPs) and regions (DMRs) were identified in NSCLP candidate genes, including differential methylation in MAFB and ZEB2 in two independent MZ twin pairs. In addition to DNA methylation differences in NSCLP candidate genes, we found common differential methylation in genes belonging to the Hippo signaling pathway, implicating this mechanosensory pathway in the etiology of NSCLP. The results of this novel approach using MZ twins discordant for NSCLP suggests that differential methylation is one mechanism contributing to NSCLP, meriting future studies on the role of DNA methylation in familial and sporadic NSCLP.

10.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920085

RESUMEN

Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.


Asunto(s)
Oído Interno/patología , Terapia Genética , Pérdida Auditiva/terapia , Retinitis Pigmentosa/terapia , Síndromes de Usher/terapia , Oído Interno/crecimiento & desarrollo , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Humanos , Mutación/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Síndromes de Usher/etiología , Síndromes de Usher/genética , Síndromes de Usher/patología
11.
Front Neurol ; 12: 633207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613440

RESUMEN

Background: Vestibular disorders (VDs) are a clinically divergent group of conditions that stem from pathology at the level of the inner ear, vestibulocochlear nerve, or central vestibular pathway. No etiology can be identified in the majority of patients with VDs. Relatively few families have been reported with VD, and so far, no causative genes have been identified despite the fact that more than 100 genes have been identified for inherited hearing loss. Inherited VDs, similar to deafness, are genetically heterogeneous and follow Mendelian inheritance patterns with all modes of transmission, as well as multifactorial inheritance. With advances in genetic sequencing, evidence of familial clustering in VD has begun to highlight the genetic causes of these disorders, potentially opening up new avenues of treatment, particularly in Meniere's disease and disorders with comorbid hearing loss, such as Usher syndrome. In this review, we aim to present recent findings on the genetics of VDs, review the role of genetic sequencing tools, and explore the potential for individualized medicine in the treatment of these disorders. Methods: A search of the PubMed database was performed for English language studies relevant to the genetic basis of and therapies for vestibular disorders, using search terms including but not limited to: "genetics," "genomics," "vestibular disorders," "hearing loss with vestibular dysfunction," "individualized medicine," "genome-wide association studies," "precision medicine," and "Meniere's syndrome." Results: Increasing numbers of studies on vestibular disorder genetics have been published in recent years. Next-generation sequencing and new genetic tools are being utilized to unearth the significance of the genomic findings in terms of understanding disease etiology and clinical utility, with growing research interest being shown for individualized gene therapy for some disorders. Conclusions: The genetic knowledge base for vestibular disorders is still in its infancy. Identifying the genetic causes of balance problems is imperative in our understanding of the biology of normal function of the vestibule and the disease etiology and process. There is an increasing effort to use new and efficient genetic sequencing tools to discover the genetic causes for these diseases, leading to the hope for precise and personalized treatment for these patients.

12.
Genet Test Mol Biomarkers ; 24(10): 674-680, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32991204

RESUMEN

Background: Hearing loss (HL) is one of the most common and genetically heterogeneous sensory disorders in humans. Genetic causes underlie 50-60% of all HL and the majority of these cases exhibit an autosomal recessive model of inheritance. Methods: In our study, we used our targeted custom MiamiOtoGenes panel of 180 HL-associated genes to screen 23 unrelated consanguineous Iranian families with at least two affected children to identify potential causal variants for HL. Results: We identified pathogenic variants in seven genes (MYO7A, CDH23, GIPC3, USH1C, CAPB2, LOXHD1, and STRC) in nine unrelated families with varying HL profiles. These include five reported and four novel mutations. Conclusion: For small consanguineous families that were unsuitable for conventional linkage analysis the employment of the MiamiOtoGenes panel helped identify the genetic cause of HL in a cost-effective and timely manner. This rapid methodology provides for diagnoses of a significant fraction of HL patients, and identifies those who will need more extensive genetic analyses such as whole exome/genome sequencing.


Asunto(s)
Pruebas Genéticas/métodos , Pérdida Auditiva/diagnóstico , Adulto , Niño , Preescolar , Sordera/genética , Exoma/genética , Familia , Femenino , Ligamiento Genético/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Mutación Missense/genética , Linaje , Secuenciación del Exoma/métodos
13.
Gene ; 761: 144996, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32738421

RESUMEN

Sensorineural deafness in mammals is most commonly caused by damage to inner ear sensory epithelia, or hair cells, and can be attributed to genetic and environmental causes. After undergoing trauma, many non-mammalian organisms, including reptiles, birds, and zebrafish, are capable of regenerating damaged hair cells. Mammals, however, are not capable of regenerating damaged inner ear sensory epithelia, so that hair cell damage is permanent and can lead to hearing loss. The field of epigenetics, which is the study of various phenotypic changes caused by modification of genetic expression rather than alteration of DNA sequence, has seen numerous developments in uncovering biological mechanisms of gene expression and creating various medical treatments. However, there is a lack of information on the precise contribution of epigenetic modifications in the auditory system, specifically regarding their correlation with development of inner ear (cochlea) and consequent hearing impairment. Current studies have suggested that epigenetic modifications influence differentiation, development, and protection of auditory hair cells in cochlea, and can lead to hair cell degeneration. The objective of this article is to review the existing literature and discuss the advancements made in understanding epigenetic modifications of inner ear sensory epithelial cells. The analysis of the emerging epigenetic mechanisms related to inner ear sensory epithelial cells development, differentiation, protection, and regeneration will pave the way to develop novel therapeutic strategies for hearing loss.


Asunto(s)
Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Sensorineural/genética , Animales , Diferenciación Celular/genética , Sordera/genética , Oído Interno/crecimiento & desarrollo , Epigénesis Genética , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/fisiología , Pérdida Auditiva/genética , Humanos , Regeneración/genética
14.
Stroke ; 51(9): 2761-2769, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32811377

RESUMEN

BACKGROUND AND PURPOSE: Carotid plaque is a heritable trait and a strong predictor of vascular events. Several loci have been identified for carotid plaque, however, studies in minority populations are lacking. Within a multi-ethnic cohort, we have identified individuals with extreme total carotid plaque area (TCPA), that is, higher or lower TCPA than expected based on traditional vascular risk factors (age, sex, smoking, diabetes mellitus, hypertension, etc). We hypothesized that these individuals are enriched with genetic variants accounting for the plaque burden that cannot be explained by traditional vascular risk factors. Herein, we sought to identify the genetic basis for TCPA using the multi-ethnic cohort. METHODS: Three hundred forty participants (170 from each extreme group) from 3 race/ethnic groups (53% Hispanic, 29% non-Hispanic Black, and 18% non-Hispanic White) were genotyped using a genome-wide single-nucleotide polymorphism (SNP) array and imputed using 1000Genome data. SNP-based analyses using logistic regression and gene-based analyses using VEGAS2 were performed within each race/ethnic group and then meta-analyzed. Genes with P<0.001 were included in an overrepresentation enrichment pathway analysis using WebGestalt. Promising findings were tested for association with ischemic stroke using the MEGASTROKE Consortium data set. RESULTS: No SNP or gene reached genome-wide significance. In the pathway analysis, GO:0050913 (sensory perception of bitter taste) gene set was significantly enriched (P=4.5×10-6, false discovery rate=0.04), which was confirmed in MEGASTROKE (P=0.01). Within the GO:0050913 gene set, 3 genes were associated with extreme TCPA in our study (P<0.001): TAS2R20, TAS2R50, and ITPR3. In TAS2R50, rs1376251 is the top SNP and has been associated with myocardial infarction by others. In ITPR3, a SNP with high regulatory potential (rs3818527, RegulomeScore=1f), and ITPR3 itself were among the top SNP-based and gene-based results and showed consistent evidence for association in all ethnic groups (P<0.05). CONCLUSIONS: Extreme TCPA analysis identified new candidate genes for carotid plaque in understudied populations.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Placa Aterosclerótica/genética , Gusto/genética , Adulto , Anciano , Población Negra , Enfermedades de las Arterias Carótidas/epidemiología , Enfermedades de las Arterias Carótidas/fisiopatología , Dieta , Etnicidad , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Hispánicos o Latinos , Humanos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Fenotipo , Placa Aterosclerótica/epidemiología , Placa Aterosclerótica/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Estados Unidos/epidemiología , Población Blanca
15.
Front Public Health ; 8: 205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32574296

RESUMEN

The COVID-19 outbreak spread rapidly throughout the globe, with worldwide infections and deaths continuing to increase dramatically. To control disease spread and protect healthcare workers, accurate information is necessary. We searched PubMed and Google Scholar for studies published from December 2019 to March 31, 2020 with the terms "COVID-19," "2019-nCoV," "SARS-CoV-2," or "Novel Coronavirus Pneumonia." The main symptoms of COVID-19 are fever (83-98.6%), cough (59.4-82%), and fatigue (38.1-69.6%). However, only 43.8% of patients have fever early in the disease course, despite still being infectious. These patients may present to clinics lacking proper precautions, leading to nosocomial transmission, and infection of workers. Potential COVID-19 cases must be identified early to initiate proper triage and distinguish them quickly from similar infections. Early identification, accurate triage, and standardized personal protection protocols can reduce the risk of cross infection. Containing disease spread will require protecting healthcare workers.


Asunto(s)
COVID-19 , Tos/etiología , Fiebre/etiología , Personal de Salud/estadística & datos numéricos , COVID-19/diagnóstico , COVID-19/transmisión , Salud Global , Humanos , Control de Infecciones , Medición de Riesgo , SARS-CoV-2
16.
Hum Genet ; 139(10): 1261-1272, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32318854

RESUMEN

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect for which only ~ 20% of the underlying genetic variation has been identified. Variants in noncoding regions have been increasingly suggested to contribute to the missing heritability. In this study, we investigated whether variation in craniofacial enhancers contributes to NSCLP. Candidate enhancers were identified using VISTA Enhancer Browser and previous publications. Prioritization was based on patterning defects in knockout mice, deletion/duplication of craniofacial genes in animal models and results of whole exome/whole genome sequencing studies. This resulted in 20 craniofacial enhancers to be investigated. Custom amplicon-based sequencing probes were designed and used for sequencing 380 NSCLP probands (from multiplex and simplex families of non-Hispanic white (NHW) and Hispanic ethnicities) using Illumina MiSeq. The frequencies of identified variants were compared to ethnically matched European (CEU) and Los Angeles Mexican (MXL) control genomes and used for association analyses. Variants in mm427/MSX1 and hs1582/SPRY1 showed genome-wide significant association with NSCLP (p ≤ 6.4 × 10-11). In silico analysis showed that these enhancer variants may disrupt important transcription factor binding sites. Haplotypes involving these enhancers and also mm435/ABCA4 were significantly associated with NSCLP, especially in NHW (p ≤ 6.3 × 10-7). Importantly, groupwise burden analysis showed several enhancer combinations significantly over-represented in NSCLP individuals, revealing novel NSCLP pathways and supporting a polygenic inheritance model. Our findings support the role of craniofacial enhancer sequence variation in the etiology of NSCLP.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Variación Genética , Herencia Multifactorial , Transportadoras de Casetes de Unión a ATP/genética , Animales , Enfermedades Asintomáticas , Labio Leporino/etnología , Labio Leporino/patología , Fisura del Paladar/etnología , Fisura del Paladar/patología , Embrión de Mamíferos , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hispánicos o Latinos , Humanos , Factor de Transcripción MSX1/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Linaje , Fosfoproteínas/genética , Estados Unidos , Población Blanca
17.
Gene ; 747: 144677, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32304785

RESUMEN

The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.


Asunto(s)
Terapia Genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/terapia , Análisis Costo-Beneficio , Epigénesis Genética , Técnicas de Transferencia de Gen , Terapia Genética/economía , Pérdida Auditiva Sensorineural/genética , Humanos
18.
Birth Defects Res ; 112(3): 234-244, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825181

RESUMEN

Nonsyndromic cleft lip and palate (NSCLP) is one of the most common craniofacial anomalies in humans, affecting more than 135,000 newborns worldwide. NSCLP has a multifactorial etiology with more than 50 genes postulated to play an etiologic role. The genetic pathway comprised of Pbx-Wnt-p63-Irf6 genes was shown to control facial morphogenesis in mice and proposed as a regulatory pathway for NSCLP. Based on these findings, we investigated whether variation in PBX1, PBX2, and TP63, and their proposed interactions were associated with NSCLP. Fourteen single nucleotide variants (SNVs) in/nearby PBX1, PBX2, and TP63 were genotyped in 780 NSCLP families of nonHispanic white (NHW) and Hispanic ethnicities. Family-based association tests were performed for individual SNVs stratified by ethnicity and family history of NSCLP. Gene-gene interactions were also tested. A significant association was found for PBX2 rs3131300 and NSCLP in combined Hispanic families (p = .003) while nominal association was found for TP63 rs9332461 in multiplex Hispanic families (p = .005). Significant haplotype associations were observed for PBX2 in NHW (p = .0002) and Hispanic families (p = .003), and for TP63 in multiplex Hispanic families (.003). An independent case-control group was used to validate findings, and significant associations were found with PBX1 rs6426870 (p = .007) and TP63 rs9332461 (p = .03). Gene-gene interactions were detected between PBX1/PBX2/TP63 with IRF6 in NHW families, and between PBX1 with WNT9B in both NHW and Hispanic families (p < .0018). This study provides the first evidence for a role of PBX1 and PBX2, additional evidence for the role of TP63, and support for the proposed PBX-WNT-TP63-IRF6 regulatory pathway in the etiology of NSCLP.


Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio , Humanos , Recién Nacido , Factores Reguladores del Interferón/genética , Ratones , Polimorfismo de Nucleótido Simple/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas , Transactivadores , Factores de Transcripción , Proteínas Supresoras de Tumor , Vía de Señalización Wnt
19.
Sci Rep ; 9(1): 11621, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406157

RESUMEN

Carotid intima-media thickness (cIMT) is a subclinical marker for atherosclerosis. Previously, we reported a quantitative trait locus (QTL) for total cIMT on chromosome 14q and identified PRiMA1, FOXN3 and CCDC88C as candidate genes using a common variants (CVs)-based approach. Herein, we further evaluated the genetic contribution of the QTL to cIMT by resequencing. We sequenced all exons within the QTL and genomic regions of PRiMA1, FOXN3 and CCDC88C in Dominican families with evidence for linkage to the QTL. Unrelated Dominicans from the Northern Manhattan Study (NOMAS) were used for validation. Single-variant-based and gene-based analyses were performed for CVs and rare variants (RVs). The strongest evidence for association with CVs was found in PRiMA1 (p = 8.2 × 10-5 in families, p = 0.01 in NOMAS at rs12587586), and in the five-gene cluster SPATA7-PTPN21-ZC3H14-EML5-TTC8 locus (p = 1.3 × 10-4 in families, p = 0.01 in NOMAS at rs2274736). No evidence for association with RVs was found in PRiMA1. The top marker from previous study in PRiMA1 (rs7152362) was associated with fewer atherosclerotic events (OR = 0.67; p = 0.02 in NOMAS) and smaller cIMT (ß = -0.58, p = 2.8 × 10-4 in Family). Within the five-gene cluster, evidence for association was found for exonic RVs (p = 0.02 in families, p = 0.28 in NOMAS), which was enriched among RVs with higher functional potentials (p = 0.05 in NOMAS for RVs in the top functional tertile). In summary, targeted resequencing provided validation and novel insights into the genetic architecture of cIMT, suggesting stronger effects for RVs with higher functional potentials. Furthermore, our data support the clinical relevance of CVs associated with subclinical atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Grosor Intima-Media Carotídeo , Ligamiento Genético , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Aterosclerosis/patología , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , República Dominicana , Femenino , Humanos , Escala de Lod , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Unión a Poli(A)/genética , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas no Receptoras/genética , Sitios de Carácter Cuantitativo
20.
Int J Audiol ; 58(12): 834-850, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31264897

RESUMEN

Objective: Universal newborn hearing screening (UNHS) uses otoacoustic emissions testing (OAE) and auditory brainstem response testing (ABR) to screen all newborn infants for hearing loss (HL), but may not identify infants with mild HL at birth or delayed onset HL. The purpose of this review is to examine the role of genetic screening to diagnose children with pre-lingual HL that is not detected at birth by determining the rate of children who pass UNHS but have a positive genetic screening. This includes a summary of the current UNHS and its limitations and a review of genetic mutations and screening technologies used to detect patients with an increased risk of undiagnosed pre-lingual HL.Design: Literature review of studies that compare UNHS with concurrent genetic screening.Study sample: Infants and children with HLResults: Sixteen studies were included encompassing 137,895 infants. Pathogenic mutations were detected in 8.66% of patients. In total, 545 patients passed the UNHS but had a positive genetic screening. The average percentage of patients who passed UNHS but had a positive genetic screening was 1.4%.Conclusions: This review demonstrates the positive impact of concurrent genetic screening with UNHS to identify patients with pre-lingual HL.


Asunto(s)
Pruebas Genéticas , Pérdida Auditiva/diagnóstico , Pruebas Auditivas , Tamizaje Neonatal , Humanos , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA